人工智能 开源 智能语音 计算机视觉

科普:计算机视觉和AI

2019-03-14
15次浏览
计算机视觉一般来讲,计算机视觉主要分为图像分类、目标检测、目标跟踪和图像分割四大基本任务。目前,计算机视觉识别这一人工智能基础应用技术部分已达商业化应用水平,被用于身份识别、医学辅助诊断、自动驾驶等场景。计算机视觉的三大热点在政策引导、技术创新、资本追逐以及消费需求的驱动下,基于深度学习的计算机视觉应用不断落地成熟,并出现了三大热点应用方向:人脸识别、视频结构化、姿态识别。自然语言处理自然语言处理(NLP)是研究计算机处理人类语言的一门技术,是机器理解并解释人类写作与说话方式的能力,也是人工智能最初发展的切入点和目前大家关注的焦点。自然语言处理的主要步骤包括分词、词法分析、语法分析、语义分析等,其应用方向主要有文本分类和聚类、信息检索和过滤、信息抽取、问答系统、机器翻译等方向。展望AI的五大趋势人工智能这座矿还远没有挖完,还有一箩筐的问题等待解决。一方面,深度学习算法模型存在可靠性及不可解释性问题,因此存在产生不可控结果的隐患;另一方面,当前的数据环境不够完善,存在着流通不畅、数据质量良莠不齐和关键数据集缺失等问题。此外,推断软件框架质量参差不齐,制约了业务开展,编译器缺乏统一的中间表示层标准,云、侧端AI芯片的市场格局有待形成。基于技术和产业的发展现状,信通院总结出了以下五大趋势:迁移学习的研究及应用将成为重要方向。迁移学习由于侧重对深度学习中知识迁移、参数迁移等技术的研究,能够有效提升深度学习模型复用性,同时对于深度学习模型解释也提供了一种方法,能够针对深度学习算法模型可靠性及不可解释性问题提供理论工具。深度学习训练软件框架将逐渐趋同,开源推断软件框架将迎来发展黄金期。随着人工智能应用在生产生活中的不断深入融合,对于推断软件框架功能及性能的需求将逐渐爆发,催生大量相关工具及开源推断软件框架,降低人工智能应用部署门槛。中间表示层之争将愈演愈烈。以计算模型为核心的深度学习应用,由于跨软件框架体系开发及部署需要投入大量资源,因此模型底层表示的统一将是业界的亟需,未来中间表示层将成为相关企业的重点。AI计算芯片朝云侧和终端侧方向发展。从云侧计算芯片来看,目前GPU占据主导市场,以TPU为代表的ASIC只用在巨头的闭环。生态,未来GPU、TPU等计算芯片将成为支撑人工智能运算的主力器件,既存在竞争又长期共存,一定程度可相互配合;FPGA有望在数据中心中以CPU+FPGA形式作为有效补充。从终端侧计算芯片来看,这类芯片将面向功耗、延时、算力、特定模型、使用场景等特定需求,朝着不同发展。行业巨头以服务平台为核心打造生态链。对于国内外的云服务和人工智能巨头,如亚马逊、微软,阿里云、腾讯云、科大讯飞、旷视科技等企业,将围绕各自应用,与设备商、系统集成商、独立软件开发商等联合,为政府,企业等垂直领域提供一站式服务,共同打造基于服务平台的生态系统。上一波的企业数字化为深度学习的产业化落地提供了初步引导,随后,人工智能相关的大数据、云服务、芯片、算法产业和市场格局逐渐成熟。在智能语音、计算机视觉、自然语言理解等细分技术的发展下,智能医疗、智能金融、智能汽车等“AI+”项目掀起了一波创投热。无疑,AI泡沫确实存在,但AI曙光势必降临。

我要点评